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Abstract

The paper is concerned with numerical solution procedures for coupled chemo-mechanical simulations of concrete
structures subjected to calcium leaching and mechanical damage. The analyses are based upon the chemo-mechanical
damage model for cementitious materials presented in the first part of the paper [Int. J. Solids Struct., in press]. These
analyses are characterized by a non-linear transient two-field problem described by the displacement field, the pore fluid
calcium concentration field and its rate as state variables. The related non-linear first order initial boundary value
problem is solved numerically by a semi-discretization strategy. For the temporal discretization the second order
accurate implicit generalized mid-point rule is used. The spatial discretization is based upon hierarchical finite elements.
The non-linear algebraic system of equations is solved by consistent linearization and Newton—Raphson iteration.
Representative simulations of calcium leaching and the coupled chemo-mechanical degradation of concrete structures
are presented. In particular, the process of calcium leaching is studied in detail by means of a one-dimensional model
problem. Chemo-mechanical interactions on the structural level are investigated in the numerical simulation of a
concrete beam subjected simultaneously to mechanical loads and deionized water. It is demonstrated that chemical
damage not only reduces the limit load and the stiffness of concrete structures but also their structural behavior.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Long-term degradation of concrete structures under permanently humid environmental conditions is
mainly controlled by interacting chemical and mechanical processes leading to the destruction of the micro-
structure by the dissolution of cement constituents and the propagation of micro-cracks. In the end, the
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structural collapse may be caused by the superposition of both deterioration mechanisms, even if each
individual process is not critical for the safety of the concrete structure. A extensive review of experiments
on calcium leaching and interacting chemical and mechanical deterioration processes of cementitious
materials and concrete structures, respectively, has been recently given by Kuhl et al. (in press). The fol-
lowing observations have been made in experimental investigations of cement and concrete specimens (see
e.g. Adenot and Buil, 1992; Berner, 1988; Delagrave et al., 1997; Gérard, 1996, 2000; Carde et al., 1997,
1996; Carde and Francois, 1997; Heukamp et al., 2001) and concrete structures (Le Bellégo et al., 2000,
2001a, 2003), respectively:

(1) Calcium leaching is a diffusion controlled process leading to the dissolution of portlandite and ettringite
and to the decalcification of CSH-phases.

(2) As a result of the dissolution of calcium two fronts associated with the dissolution of portlandite and
CSH can be observed.

(3) Calcium leaching reduces the stiffness and strength and increases the conductivity of cementitious
materials.

(4) Mechanical damage accelerates the chemical degradation of concrete as a consequence of improved
transport properties.

The present paper is concerned with the computational aspects of a recently developed coupled chemo-
mechanical damage model for cementitious materials (Kuhl et al., in press) and the numerical analysis of
chemo-mechanical degradation on a structural level. In particular, the ingredients of a multifield finite
element formulation, characterized by implicit time integration, consistent linearization, a higher order
hierarchical finite element discretization and an iterative Newton—Raphson scheme, are presented. In the
chemo-mechanical model, cementitious materials are represented as porous media composed by the con-
nected pore space and the cementitious skeleton. The coupled chemo-mechanical processes are governed by
the mass balance of calcium ions within the pore fluid and the balance of linear momentum of the skeleton.
Related constitutive models are developed using the theory of mixtures (Bowen, 1976) and the total porosity
defined in terms of the initial porosity, the chemically induced porosity and the apparent porosity due to
mechanically induced damage. The evolution of chemically and mechanically induced porosities is con-
trolled by internal variables using phenomenological equilibrium chemistry by Gérard (1996, 2000) and
Delagrave et al. (1997) and the scalar mechanical damage model by Simo and Ju (1987).

The paper is organized as follows: In the first part, the numerical solution procedures for coupled
chemo-mechanical finite element analyses, namely, the weak formulation, the time integration, the lin-
earization, the spatial discretization and the iterative solution technique, are described. In the second part,
this finite element model is applied to one-dimensional studies of calcium leaching and to long-term
analyses of the coupled chemo-mechanical deterioration of a concrete beam to provide a deeper insight
into the interacting degradation processes due to calcium leaching and load induced damage. The nu-
merical examples demonstrate that the chemo-mechanical damage model (Kuhl et al., in press) together
with the numerical methods proposed in the present paper are able to reproduce respective experimental
results.

2. Numerical solution of the coupled initial boundary value problem

The coupled chemo-mechanical degradation of reactive porous materials due to calcium leaching and
mechanically induced damage as described by the chemo-mechanical model presented in the first part of the
paper (Kuhl et al., in press), constitutes a non-linear multiple field initial boundary value problem. This
coupled problem is defined in terms of the calcium concentration field of the pore fluid ¢(X), its rate ¢(X)
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and the displacement field of the porous material u(X). Both fields are coupled through the total porosity,
which controls the conductivity, the stiffness and the strength of the porous material. Vice versa, the total
porosity depends on the mechanically and chemically induced damage. The coupled system is solved
numerically by methods so far employed in the context of non-linear transient problems of structural
mechanics (see e.g. Belytschko et al., 2000; Crisfield, 1991, 1997; Zienkiewicz and Taylor, 2000). The fol-
lowing strategy is applied to obtain a step-wise iterative solution of the coupled algebraic system:

(1) Weak formulation of the balances of calcium mass and linear momentum including the related constitu-
tive laws and Neumann boundary conditions.

(2) Time discretization of the weak form and integration by means of the second order accurate implicit
generalized mid-point rule, resulting in the semi-discrete weak form.

(3) Consistent linearization of the semi-discrete weak form resulting in the linearized semi-discrete weak
form.

(4) Spatial discretization of the non-linear and the linearized semi-discrete weak form by hierarchically
generated higher order p-finite elements resulting in the generalized vector of internal forces and the
generalized tangent stiffness matrix.

(5) Incremental iterative solution of the resulting system of equations using the iterative Newton—Raphson
scheme.

It is worth to notice that changes of the above sequence (2)—(4) do not influence the result of the procedure.
The proposed sequence is used to obtain a consistent and compact description of the numerical solution
procedure.

2.1. Weak form

The weak form of the coupled initial boundary problem, defined by the calcium mass balance and the
balance of momentum

divg+ [[pg + b ] +5=0  dive=0 (1)

and the related Neumann boundary conditions and constitutive laws (compare Kuhl et al., in press), is
obtained by multiplying Eqgs. (1) with appropriate test functions ¢ and du, integration over the domain Q
and the boundaries I',, I',, respectively, and the re-arrangement by means of the divergence theorem. For a
simpler presentation, the resulting virtual work 8/ is decomposed into the chemical and the mechanical
virtual work 31, and 31, respectively. Both parts are vanishing for chemical and mechanical equilibrium
states.

W =W, + Wy =0
W, = / dy-qdV + / dc([py + d.Je + (f)cc+$]dV+/ dcq*d4 =0
Q Q r,
BWm:/Ss:adV—/ Su-t*dAd=0
Q I
In Eq. (2), 8¢ = V¥™8u and &y = —Voc.
2.2. Time integration by the generalized mid-point rule

In order to integrate the considered initial value problem, the generalized mid-point rule by Chung
and Hulbert (1993) based on the classical time approximation by Newmark (1959) is applied. The
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advantages of the chosen time integration scheme are its implicit formulation, its second order accuracy,
its simple extension to second order differential equations and the applicability of classical error indi-
cators and adaptive time stepping schemes in the linear and non-linear regime (see e.g. Zienkiewicz and
Xie, 1991; Kuhl and Ramm, 1999). As the basis for the integration, the time interval of interest [0, T}] is
partitioned into time intervals [t,,7,,,] with corresponding time steps Az =+, — f,. Assuming known
state variables u,,c, and ¢, at time ¢, and prescribed Neumann boundary conditions #*(¢) and ¢*(¢) for
all + € [0, 7;], the time integration requires the successive determination of the state variables u,., ¢,
and ¢,,; at the end of each time step. Using the Newmark approximation (Newmark, 1959) and the
related time integration parameters y and f to calculate the rate of the calcium concentration of the pore
fluid at time ¢,.4,

é”+1 (Cn+1) = ﬁ [CnJrl - Cn] - i ; ﬁcn (3)

the set of variables is reduced to the displacements u,,; and the concentration c,,; at the end of the time
step. Furthermore, the definition of generalized mid-point state variables u,.|_,, ¢,11_, and ¢,.;_, with
0 <a< 1 is introduced according to Chung and Hulbert (1993):

Uy, = [1 = ou, + om,

Cntl—o = [1 - O(]cn-%—l + ocy (4)

é'nJrlfac [1 - O‘]én+l + O“}n

The weak form (2) evaluated at the generalized mid-point n 4+ 1 — o, representing the time ¢, , =
[1 — o]t,41 + at,, yields the semi-discrete form of the coupled chemo-mechanical problem:

SW:Hf:{ = /Q&’nﬂ—u ! qn+1—de + / 60”“*& q:ﬂ—adA + /Q SCnJrlfot[M)O + d)c}é + (f;(.c + ‘é]n+l—adV
T,

q

+ / 68n+1—a 1O0ptl—y dv */ 8un+l—o¢ : tn*+1,adA
Q I's

—0 (5)

The indices (-),,,_, of non-state variables (-) indicate that the related value (-) is evaluated based upon the
state variables ¢,,1_, and u,,,_, at time ¢,,;_,. The time discrete Neumann boundary conditions are cal-
culated according to Eq. (4):

q:ﬂﬂ =[l- 0‘]qu+1 + 066]:, t:+1fo< =[1- O‘]t:ﬂ + O‘t: (6)

2.3. Consistent linearization of the semi-discrete weak form

Linearization of Eq. (5) with respect to the concentration ¢,,; and the displacement vector u,,| at the
end of the time interval [t,, £,,] leads to the linearized semi-discrete weak form of the chemo-mechanical set
of equations:
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Herein, the abbreviation
09,
¢, = [1 +ai;cn+l_4 (8)

and derivatives considering the time integration scheme are incorporated. x. is the threshold value of the
calcium concentration within the pore fluid associated with chemical equilibrium between calcium bounded
within the skeleton and solved within the pore fluid. For the employed generalized mid-point rule and the
Newmark time approximations the derivatives associated with the temporal approximations are obtained
from Egs. (3) and (4):

aé‘n+1 o Y
acrHrl ﬁAt
aun+l—m o acn+1—1 o aén+1—1

= = =1-u
aunJrl acn+1 acrHrl

©)

Further derivatives ds/dc = 8s/0k, Ox,./0c, d¢./ds, Os/0k,, 0%s/0k> and Ok./dc contained in Eq. (7) are
summarized in the first part of the present paper (Kuhl et al., in press).

2.4. Finite element discretization using p-finite elements

The finite element discretization of the virtual work in the original and linearized form is performed by a
family of isoparametric hierarchically generated p-finite elements based on Legendre polynomials (see e.g.
Szabé and Babuska, 1992; Schwab, 1998). As demonstrated by Bangert (1999), this family of elements
permits different orders of approximation for the concentration and deformation fields in addition to an
effective coding of higher order multifield elements. Consequently, this hierarchical family of element is well
suited for adaptive coupled analyses. Furthermore, higher order approximations avoid the main disad-
vantage of low order finite elements, namely the locking phenomenon, in a natural manner (see e.g. Diister
et al., 2001; Schwab, 1998).



46 D. Kuhl et al. | International Journal of Solids and Structures 41 (2004) 41-67

The finite element discretization is based on the subdivision of the investigated domain in element do-
mains Q = [JI°, Q° and the approximation of the position vector X and the state variables ¢, u by means of
shape functions N, given in Appendix A.1, and related nodal values X', ¢’ and u':

XziNiXi, czzm:Nici, ume:Niui (10)
i-1 i=1 =1

For the finite element discretization, the approximations (10), the resulting approximations (A.14) of the
virtual concentration gradient &y and the specific internal virtual work 8¢ : 6, respectively, and the linea-
rization of the specific internal virtual work with respect to the strain and concentration increments (A.16)
are used. Application of these approximations to the semi-discrete form (5) and the linearized semi-discrete
form (7) and integration over the element domain €° yields the discrete forms on the element level:

m i i i
SWe ~ 8Cn-%—l—c{ rc + rce _ Bde e
n+l—o ™7 Sul ’ Fo_ - ntl—o [V - re]nﬁ»l*@t
i=1 n+1—a m me |1y
(11)
. . T i
m m i ij 1,ij
e 60"‘#1*1 kcjckcm AC’I7+] e te e
ASVVn-H—az ~ E : E : i : i = dd +l-a K +1—o¢Ad +1
< - 5”l k” klj Au‘l n ( n n
=1 j=1 ntl-u memm |, n+1

The virtual work is described in terms of the generalized vectors of the internal and external forces r(d*)
and r¢, respectively, defining the generalized residual forces ¢ — r¢(d®). The linearized virtual work is
formulated using the generalized tangent stiffness matrix K*(d¢). The element vector d° contains the ele-
ment degrees of freedom, namely the nodal values of the concentration ¢’ and the nodal displacement
vectors u'. v, and 7, are the nodal values of the internal and external calcium mass flux, ¥/, and ¢, are the

> m
internal and equivalent external forces, k” are the mechanical element tangent stiffness tensors associated
with nodes i and j, k¥, are the scalar valued effective conductivities, k7 and k” are the first order chemo-
mechanical coupling tensors. These vectors and tensors are given in detail by Eqgs. (A.15) and (A.17). After
assembling of the above element quantities, the vectors containing the degrees of freedom of the concen-
tration and the displacements, the generalized residual forces and the generalized tangent stiffness matrix

are obtained on the structural level:

ne d"+1—9¢ = UdflJrlfzx
W1 o = D OW !
e=1

n+1—o

ne Kfz+17cc = QIK26+1,“ (12)
AW, i1y = ZASWnilfu -
e=1

2.5. Iterative solution using the Newton—Raphson scheme

Approximation of the Taylor expansion of the semi-discrete virtual work (5), using the finite element
discretization described in Section 2.4,

k
dn+l

6Wk+l — 6Wk

n+l—a n+1—o

Ay 8y () v 8 K

n+lfo<(

Ad, . =0 (13)
leads to the iterative Newton—Raphson scheme

K¢1+lfa<(d:;+l)Ad"+1 = [ré‘ - y(dﬁJfl)}n-H—o( (14)
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Herein, the Newton correction or, equivalently, the incremental solution vector

My =)~ 1)
Iim‘tial conditions do, do ‘

loop over time steps n |

|generalized external load vector (Figure 2) Tentl-a; (6,A.15) ‘
loop over iteration steps & |
|update of mid-point state variables duii—a, duyio (3,4) ‘
|genera]ized internal force vector  (Figure 2) r(df.,) (11,A.15) ‘

| generalized tangent stiffness matrix (Figure 2) Ki(dE 1) (11,A.17) ‘
|residuum 'r(dﬁ“) —Te (11) ‘
Isolution of linear system of equations Adpi = Kt [r— 7] (14) ‘
|NEWTON correction dﬁf‘ =dt 11+ Adpy (15) ‘
|convergence check ‘
E+1—k |
|update of end-point state variables dpi1(dns1) (3) ‘
n+l—on |

Fig. 1. Algorithmic set-up on the structural level (vector d contains the concentrations ¢ and the displacements u).

Iselect nodal positions and nodal state variables for ¢ € [1,m)] Xt ol ‘

loops over GAUSS points [, g |

|coordinates and weights of GAUSS point ¢ &, ol ol (A.11) ‘
|shape functions and their derivatives for i € [1,m] Ni, VNt (A.1-A8) ‘
|JACOBIan, gradient of shape functions for ¢ € [1,m)] J, |J|, J°T, VNt (A.12,A.9) ‘
|state variables and gradients u, ¢, ¢ v, Vu, € (10,A.13)‘
|check damage criteria and update internal variables Dy Py Ky Ke 1] ‘
loop(s) over element nodes i(, 5) |
|externa1 loads (7. in Figure 1) Phey oy 7C (A.15) ‘
Iinternal loads (7 in Figure 1) ri, ri Tt (A.15)
Itangent (K¢ in Figure 1) ki, k9 kE kY K (A.17) ‘
Iweighted addition to structural vectors and tangent matrix re, v, Kt (A.11,12) ‘
next 4, J |
next [, g |

Fig. 2. Algorithmic set-up on the element level. Calculation of the generalized residual forces r* — r¢ and r — r, and the generalized
tangent stiffness matrices K and K'.
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is defined. After a convergent solution of Eq. (13) is obtained, the calcium concentration rate at the end of
the time step is updated by means of Eq. (3). Since concentrations and displacements contained in the
solution vector d,,; have different physical units and may also have different dimensions, their convergence
should be checked independently.

2.6. Algorithmic set-up

The algorithmic scheme of the numerical solution procedures for the coupled analysis of dissociation—
diffusion of calcium and chemo-mechanical damage in cementitious materials on the structural level is
illustrated in Fig. 1. Fig. 2 contains the respective algorithmic scheme on the element level.

3. Representative numerical simulations

In this section the proposed chemo-mechanical damage model together with the numerical solution
strategy presented in Section 2 is applied to analyses of the one-dimensional reaction—diffusion process
within a concrete bar and the coupled chemo-mechanical deterioration of a plane cementitious beam.
Material and model parameters for both analyses are given in Table 1.

3.1. One-dimensional calcium leaching

In this subsection numerical and physical aspects of the analysis of the dissolution and transport of
calcium within a bar made of cement (Fig. 3) are investigated. The initial condition is characterized by a
state of chemical equilibrium of the virgin material ¢(#) = ¢y VX € Q. The concrete bar is subjected to a
Dirichlet boundary condition ¢*(¢) at the bottom (I'.) (see load histories at the right-hand side of Fig. 3).
All other surfaces are assumed to be insulated (¢* = 0). Since the boundary conditions are spatially
constant on I'., the calcium concentration of the pore fluid ¢ varies only in X, direction within the domain
Q. Consequently, only a one-dimensional system needs to be solved for the present studies. However, the
bar is discretized by NE two-dimensional finite elements with polynomial degree p. The investigated /- and
p-refinements are contained on the left-hand side of Fig. 3. Independent of the chosen spatial discretization
10x 10 Gauss-points are used for the integration of the finite element quantities. This high order integration
scheme was only used to obtain a high spatial resolution of the variables k., s and § for their graphical
representation. The computations could be also performed with equivalent accuracy by adapting the
number of Gauss-points to the polynomial degree of the finite elements. For the time integration the
numerically undamped mid-point rule with the parameters o = 2§ = y = 0.5 and time steps At = 275 d is

Table 1
Material and model parameters
Jo = 12.153 x 10° N/m? co = 20.7378 mol/m? n =385
U, = 18.229 x 10° N/m? ¢, =19 mol/m? m=>5
¢y =0.2 Cesh = 1.5 mol/m? 4 =3.5x 107 m*/mol
K0 =1.1x10"* 5o = 15 kmol/m? Doy = 791.8 x 10712 m?/s
o, = 0.9 s; = 9 kmol/m? Dy, = 96.85 x 1072 m?/s \/m3/mol

B, = 1000 % = 0.565
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Fig. 3. One-dimensional calcium leaching: geometry, boundary conditions, discretization, /- and p-refinement and loading histories.
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Fig. 4. One-dimensional calcium leaching: convergence of p- and A-refinement for different positions and time steps.

Table 2
One-dimensional calcium leaching: convergence of ¢/c, for the p-refinement
NEQ X, =76 mm X, =52 mm X, =28 mm X, =4 mm t/At
21 0.97324785898 0.96794311836 0.70815364937 0.09523411596 100
41 0.97224611579 0.96560956321 0.71110716903 0.09556336014
61 0.97223399541 0.96558011940 0.71057962272 0.09545208749
81 0.97223315154 0.96557760949 0.71076420594 0.09545460464
101 0.97223301893 0.96557711281 0.71067375999 0.09544927379
21 0.16315601703 0.14366744303 0.09464904908 0.01323588327 400
41 0.16305813056 0.14356512504 0.09455423671 0.01321756888
61 0.16305012586 0.14355677314 0.09454933744 0.01321727474
81 0.16304967740 0.14355645247 0.09454924341 0.01321678770
101 0.16304743030 0.14355631986 0.09454921930 0.01321764122
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used. The initial condition for the concentration field is given by the equilibrium concentration of the
chemically sound concrete ¢ff = co.

3.1.1. h- and p-refinement and convergence

The convergence of finite element analyses of one-dimensional calcium leaching, using alternatively the
h- and p- finite element refinement according to Fig. 3, is illustrated in Fig. 4 and Table 2. The calcium
concentration c¢ is calculated at several positions (marked by circular, triangular, square and rhombic
points) and different time steps (marked by different line types). NEQ represents the number of degrees of
freedom of the equivalent discretization by one-dimensional finite elements. For both refinement strategies
the solution is only slightly affected after the first refinement step and approximately constant for further
refinements. Hence, already for relatively coarse discretizations accurate finite element solutions are ob-
tained. An additional analysis with NE = 10 and p = 1 could not be successfully completed due to lack of
convergence during the Newton—Raphson iteration at the beginning of portlandite dissolution. As was

3 QU ) o=
AF = 500 AF= 500
Fig. 5. One-dimensional calcium leaching: variation of the calcium concentration c and s and the calcium mass production s’ [mol/m?]
as functions of the position X, and the time 7 using Kohlrausch’s law (Dy. # 0) and the standard transport model (Dy. = 0) (NE = 40,

p=1.
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Fig. 6. One-dimensional calcium leaching: profiles of c¢/cy, s/sy and s’ [mol/m®] using Kohlrausch’s law (NE = 20, p = 5).

shown by Becker (2001), this lack of convergence occurs independently of the spatial discretization tech-
nique. In particular, Becker (2001) has compared the 4- and p-finite element method, the finite volume
method and the finite difference method. The reason for the failure of the Newton—Raphson iteration is the
localization of the cement dissolution zones within small bands of the structure (compare Figs. 5-9), which
cannot be resolved by a coarse mesh with low order finite elements, finite volumes or finite difference stars.
Such convergence problems may be avoided, if an error controlled adaptive mesh refinement, using a fine
discretization in dissolution zones and a coarser mesh elsewhere, is used (see Diez et al., 2002). Alterna-
tively, adaptively controlled higher order finite elements can be applied.

3.1.2. Discussion of calcium dissolution—diffusion

The process of one-dimensional calcium dissolution—diffusion using the chemical model together with
Kohlrausch’s law as proposed in the first part of the paper (Kuhl et al., in press) is studied by means of finite
element discretizations characterized by NE = 40 and p = 1 or NE = 20 and p = 5. Chemical loading and
unloading is applied according to the ‘standard’ case as illustrated in Fig. 3. Fig. 5 shows the distribution of
the primary variable ¢, namely the calcium concentration of the pore fluid, the calcium concentration of the
skeleton s and the mass production due to cement dissolution s’ = §A¢ during one time step Ar as functions
of the position X, within the concrete bar and the time ¢. It should be noted that s is related to the in-
ternal chemical variable k. by means of the phenomenological chemistry model proposed by Gérard (1996)
and Delagrave et al. (1997). The relation between the calcium concentration s and the chemically in-
duced porosity ¢, = .#/plsy — s] is linear. For the graphical representation of the mass production s a
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Fig. 7. One-dimensional calcium leaching: dimensional analysis of the source terms ¢, = ¢/, + ¢}, and s', both given in mol/m’
(NE =20, p =5).
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Fig. 8. One-dimensional calcium leaching (short-term dissolution): profiles of ¢/c, s/so and § [mol/m? d] (NE = 20, p = 5).

logarithmic measure log —s’ is used. This allows for the visualization of both the dominant dissolution of
portlandite as well as the less pronounced fronts associated with the dissolution of ettringite and CSH-
phases, respectively. Values of —s’ < 1 mol/m? are set to —s' = 1 mol/m? to enable the visualization of the
secondary CSH and ettringite dissolution. All plots are given in a dimensionless form by using the bar
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Fig. 9. One-dimensional calcium leaching (long-term dissolution): propagation of portlandite and CSH dissolution fronts, front
position X, [mm] as function of the square root of time /7 [v/d].

length L, the time step A¢ and the equilibrium concentrations of the sound material ¢, and sy to normalize
X5, t, ¢ and s. The mass production s’ is normalized with respect to the maximum negative mass production
within the considered spatial and temporal domain, calculated as s/, = —1295 mol/m*. Time history plots
are defined by lines X,/L = const. and spatial profiles are given by lines #/As = const., where the thickness
of the lines represents the slope of the functions (-)(X>,¢) normal to the time histories or profiles. For the
comparison of higher order transport models accounting for ion—ion interactions due to the electrophoretic
and relaxation effects and standard transport models, characterized by D,. = 0, the s-plots are included for
both models in Fig. 5. Respective plots of the distribution of ¢/cy, s/sp and s’ along the bar axis are
contained in Fig. 6. The profiles associated with #/A¢ = 100 and /At = 400 are identified by gray lines.
Profiles corresponding to chemical unloading are marked by dashed lines.

As a consequence of the decreasing concentration ¢* at the boundary I'. a concentration gradient dc/dX,
is introduced within the pore fluid and calcium ions are moving outwards. Consequently, the calcium
concentration ¢ within the pore fluid is reduced and the chemical equilibrium between calcium ions in the
interstitial pore solution and the calcium bounded in the skeleton is violated. To restore chemical equi-
librium, cement-phases are dissociated, which means that the mass production by instantaneous dissolution
of the skeleton (§ < 0) is activated and the concentration of calcium in the skeleton s is reduced.

The history plots of the primary variable c in Fig. 5 show that the time scale of the reaction—diffusion
system, i.e. the gradient of ¢(X>, ) with respect to the time axis, changes three times during the calculation.
The first change is associated with the dissolution of portlandite, which affects the chemical porosity ¢, and,
consequently, the macroscopic conductivity ¢Dy. The second change of the time scale corresponds to the
end of the portlandite dissolution as soon as the associated dissolution front reaches the end of the bar
(X2/L = 1) at time /At = 260. If no portlandite remains to be solved, the source term § = s’ /At of the local
calcium mass balance (1) is significantly reduced. Consequently, the temporal variation of the calcium
concentration ¢ within the pore fluid is accelerated. This change of the time scale is manifested in Fig. 5 by a
kink in the c¢(Xa,¢) graph marked by a dashed line. After chemical unloading is prescribed
(400 < /At < 500), a third change of the time scale will be obtained. In this case the source term § is equal
to zero and the time dependence of the mass balance (1) is only controlled by the storage term [[¢, + ¢ ]c]
which is several dimensions smaller than § (compare Section 3.1.3). Therefore, as ¢*(¢) at the boundary is
increased, the concentration ¢ in the whole domain is rapidly increased, with an almost negligible spatial
gradient (see the dashed, nearly horizontal lines in Fig. 6 corresponding to chemical unloading). In contrast
to the outflow of calcium ions the refilling of the cement sample is much faster. This model behavior during
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chemical unloading follows partially from the increasing conductivity D, resulting from the increasing pore
space created by chemical dissolution and, more importantly, from the irreversible character of the skeleton
dissolution, which means, that in the chemical unloading range the source term § in Eq. (1) does not exist.

The profiles of the calcium concentration s in the skeleton (Fig. 5) show a pronounced front of the
portlandite dissolution within the first 80 time steps. As soon as the concentration ¢ in the pore fluid be-
comes smaller than the equilibrium concentration of the CSH-phases (¢ < ¢ ), a second dissolution front
related to the dissolution of portlandite and CSH-phases can be observed. Ettringite is dissolved between
these two fronts. While the portlandite front propagates through the cement sample with a nearly un-
changed step-like shape, the CSH front moves much slower and its shape is smoothed with time. The
different characteristics of the two dissolution mechanisms is reflected in the larger mass production s” per
time increment during the dissolution of the portlandite as compared to the CSH dissolution (lower parts of
Figs. 5 and 6). From Figs. 5 and 6 it can be observed that the propagation of the portlandite dissolution
front is decelerated with increasing advance of the front. This phenomenon results from the increasing
distance for the transport of calcium ions and from the decreasing spatial gradient of ¢. Within the time
range 400 < #/At < 500 the concentration s is unchanged. This reflects the irreversible character of the
matrix dissolution as accounted for in the proposed model by the chemical internal parameter ..

The log —s'/ log s/ ..-plots in Fig. 5 illustrate the mass production s’ due to matrix dissolution. For higher
concentrations (¢ = ¢,) the dissolution process is dominated by the portlandite dissociation at a high rate.
The dissolution front propagates relatively fast through the specimen. In the initial phase of the dissolution
process, no ettringite or CSH-phases are dissolved. As at the end of the chemical loading process the
calcium concentration decreases to ¢ & ¢, a second maximum of s’, corresponding to the dissolution of
CSH-phases develops. Consequently, the first 250 time steps are controlled by the portlandite dissolution
front and by the CSH dissolution at the end of the chemical loading. After the portlandite dissolution front
has arrived at the end of the bar, all portlandite of the cement sample is dissolved. However, there remain
chemically solvable cement phases in the material. The use of a logarithmic measure allows the visualization
of the mass production s also on smaller scales. The profiles of the negative dissociation rate —s’, illustrated
in Fig. 6 for selected time steps, shows three maxima on different scales. The maximum propagating
through the bar corresponds to the dissolution of portlandite, the second and third maxima are associated
with the dissolution of ettringite and CSH-phases. Except for the profile for /At = 100, where a high rate ¢
at an already low level of calcium concentration c in the pore fluid is prescribed at the Dirichlet boundary,
the portlandite mass production is more than one dimension larger compared to the CSH and ettringite
dissolution. While the CSH dissolution profile is characterized by a small dissolution zone and a pro-
nounced peak, the ettringite dissolution is characterized by a relatively broad dissolution zone and a small
mass production s’. Hence, it can be observed that although the portlandite dominates the dissolution
process, CSH and ettringite dissolution characterized by small rates of ion mass production always exists.
This leads to the slow propagation of the CSH dissolution front relative to the portlandite front as was
discussed earlier in the context of the distribution of s/so. It should be noted that the dissolution rate of the
CSH and ettringite increases as soon as the portlandite has reached the end of the bar. This remarkable
phenomenon results from the increase of ¢ and, consequently, of the mass production of the remaining
CSH- and ettringite phases after all portlandite is dissolved (see upper left graph of Fig. 5).

Next, the influence of the modeling of ion transport is investigated. In addition to the higher order
transport model proposed in the first part of the paper, a standard transport model, characterized by a
constant diffusivity of the pore fluid (Dy = Dyy, Do. = 0) according to Fick (1855) is employed in the one-
dimensional analyses of calcium leaching. The respective graph of the calcium concentration of the skeleton
s is shown in Fig. 5. As expected, the portlandite as well as the CSH dissolution front are propagating faster
compared to the results from the higher order transport model. Consequently, a faster progress of the
material degradation and hence, a shorter life-time of the investigated structure is predicted if the standard
transport model is applied. From Fig. 5 follows that the pronounced deceleration of the propagation of the
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portlandite front with time is not predicted by Fick’s transport model, since for this model the conductivity
Dy is not reduced by a decreasing calcium concentration. Therefore, a larger curvature of the portlandite
dissolution front in the s(X,¢)-diagram is obtained, if Kohlrausch’s law is used to calculate the concen-
tration dependent conductivity Dj.

3.1.3. Dimensional analysis of Ca’* source terms

Fig. 7 contains the distributions of the source terms s" = §A¢ and ¢y = ¢y; + ¢y = Cp1At + At = ¢y At
(see part I of this paper Kuhl et al., in press) for #/At = 100 and ¢/At = 200. &4 = ¢.c and ¢4 = [Py + P.]¢
are associated with the change of the chemically induced porosity and the calcium concentration in the pore
fluid, respectively. The left-hand side of Fig. 7 contains the individual source terms ¢y, ¢;; and cj,. On the
right-hand side the level of the source term cﬁp can be compared with the level of the calcium mass pro-
duction s’ by dissociation. The relations between the source terms ¢y, and ¢, obtained from investigations
on the material point level in the first part of the paper (Kuhl et al., in press, Section 3.7) are verified by
means of the plots given on the left-hand side of Fig. 7 in the cases of portlandite (c}, /), ~ —14, related
data is marked in Fig. 7 by a circle) and ettringite (cj,/c,; ~ —3) dissolution for two selected time steps
(t/At =100 and ¢/At=200). These values, and, in particular, the ratio for the CSH dissolution
(cla/cyy =~ —0.85) differ considerably from the values determined from dimensional analysis on the material
point level (portlandite ¢y, /cj, ~ —14, ettringite c,/cy;, ~ —6.5 and CSH ¢, /c; ~ —2.5). These differ-
ences are resulting from the fact that now an initial-boundary value problem is solved, in which the spatial
gradient V¢ has a strong influence on the level and propagation of the dissolution process. From the right-
hand side of Fig. 7 follows, that, independent of the position and time, the dissolution rate § is at least 103
times larger than the source terms ¢4, and ¢4,. The ratios ¢4 /5 and ¢4,/$ are obtained for the dissolution of
portlandite as —cy1/5 &~ 14¢42/5 ~ 6.5 x 1074, for the ettringite dissolution as c¢y/s~ —3¢41/5 ~
1.25 x 1073, and for the CSH dissolution as —¢y; /5 & 1.2¢42/5 &~ 5 x 1073, The relation between the source
terms § and ¢, is of importance for the efficiency of finite element analyses of calcium leaching, since many
terms of the effective internal flux . (Eq. (A.15)) and the tangent k%, (Eq. (A.17)) have to be calculated only
for temporal and spatial discretization of the source term ¢,.

In conclusion, from the finite element analyses of a cement bar subjected to chemical dissolution ac-
cording to the loading scenario ‘standard analyses’ (see Fig. 3) it follows that the source term § dominates
the time scale of the dissolution—diffusion process for propagating chemical damage (chemical loading).
Consequently, the source term ¢, can be neglected without any noticeable influence on the precision of the
simulation. However, if chemical unloading or non-proportional chemical loading occurs, the source term
¢y seems to be essential to preserve the time dependent character of the local calcium mass balance.

To further validate this conclusion, an additional loading scenario, characterized by a shorter dissolution
time (see the loading curve ‘short-term dissolution’ in Fig. 3) is investigated. The resulting profiles of the
concentrations c¢/cy and s/s, and the dissolution rate § are plotted in Fig. 8. Profiles related to times
(t/At = 100,200) and to chemical unloading (z/At € [200,300]) are marked by gray and dashed lines, re-
spectively. It is obvious that matrix dissolution at the end of the bar (X, € [60 mm, 80 mm)]) is still active in
the chemical unloading range. Consequently, the concentrations ¢ and s are further decreased within this
region, the portlandite dissolution front still propagates and the dissolution rate is only marginally smaller
compared with chemical loading. As a consequence of the propagating dissolution front during chemical
unloading the characteristics of the dissolution—diffusion problem changes compared to the results for the
loading scenario ‘standard analyses’ as given in Fig. 6. In contrast to Fig. 6 where chemical unloading is
characterized by nearly horizontal c-profiles, representing a small time scale or a fast system change, the c-
profiles in Fig. 8 illustrate a large time scale or a slow change of the non-linear system. Hence, it is con-
cluded, that the transient behavior of the dissolution—diffusion system is governed by the source term § if in
any subdomain of Q matrix dissolution is active, i.e. § < 0. With respect to the finite element implemen-
tation of the model, the computation of ¢4 and the related terms of the generalized vector of internal forces
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and tangent stiffness matrix, respectively, may be disregarded without any loss of accuracy, if at any po-
sition X € Q the dissolution rate is not zero (s < 0 or, equivalently, k. < 0). The efficiency of finite element
analyses of dissolution—diffusion problems may be significantly improved, if these terms are only considered
fors=0VX € Q.

3.1.4. Propagation of dissolution fronts
As has been shown in the previous subsections, the dissolution fronts of calcium hydroxide and CSH-
phases propagate through the cement specimen with different velocities. Since the velocity of dissolution
fronts is a measure for the long-term degradation of cement materials, one-dimensional finite element
analyses of a cement sample with the length 10L = 800 mm based on the loading scenario ‘long-term
dissolution’ (see Fig. 3) are performed (NE = 200 and p = 5). The resulting profiles of the Ca’" mass
production s are given on the left-hand side of Fig. 9. In these profiles two pronounced maxima and a third,
less pronounced maximum can be observed. The largest maximum of the curves represents the position of
the portlandite dissolution front. The second largest maximum correlates with the position of the CSH
dissolution front and the smallest maximum gives the position of maximum ettringite dissolution. The
width of the dissolution zones grows with time while the velocity of the propagation decreases. On the right-
hand side of Fig. 9 the positions of the dissolution fronts of portlandite and CSH-phases are plotted as
functions of the square root of time. After the prescribed calcium concentration at the boundary has
reached a minimum level at z/Az = 100, i.e. at the end of chemical loading, the fronts associated with
portlandite and CSH dissolution follow approximately straight lines. The positions of both dissolution
fronts are proportional to +/¢. This observation is also described in many publications on calcium leaching
(see e.g. Le Bellégo et al., 2000; Carde et al., 1996, 1997; Carde and Francois, 1997; Gérard et al., 1998;
Mainguy et al., 2000, 2001; Mainguy and Ulm, 2000; Torrenti et al., 1998). Compared to the dissolution
front of CSH-phases (X = 0.0492/t = 0.94™2 \/7) the portlandite dissolution front (X, = 0.3522/f =
6.69 2 \f t) propagates s1gn1ﬁcantly faster. The constant 6. 69“\‘/'-;1 corresponds well with the respectlve
onstant reported by Le Bellégo et al. (2000) for a cement paste with a high water to cement ratio. If the
movement of the ettringite dissolution zone is estimated based on the maximum ettringite dissolution, its
velocity is situated between both pronounced dissolution fronts. For more detailed comparisons of stan-
dard transport models using Fick’s law (1855) and higher order transport models considering ion—ion in-
teractions and the associated propagation of dissolution fronts see (Kuhl, submitted for publication; Kuhl
and Meschke, 2002).
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Fig. 10. Chemo-mechanical analysis of a cementitious beam: geometry, boundary conditions, loading histories and discretization.
Evolution of the mechanical damage parameter d,.
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3.2. Coupled calcium leaching and damage of a cementitious beam

In order to illustrate the interaction of chemically and mechanically induced damage the behavior of a
cementitious beam under plane strain conditions, subjected to cyclic mechanical loading and chemical
attack, is simulated by using the proposed coupled material model and discretization technique. The left-
hand side of Fig. 10 contains the geometry, the mechanical load, the mechanical support conditions, the
chemical Dirichlet boundary I'., the discretization by finite elements with p = 1 and the time history of the
applied mechanical and chemical loads. The material data (Table 1) are identical to the previous section.
The initial conditions are given by #y = 0 (undeformed configuration) and ¢(4) = ¢ (chemical equilibrium
state of the virgin cement paste) within the domain €. The Neumann boundary conditions are prescribed as
g* =0 for X € I', (insulated surfaces) and t* = 0 for X € I',. A displacement driven load is applied in the
hatched region (equivalent to four finite elements) at the center of the beam. In this region, a larger initial
damage threshold k% = 10« and a smaller Young’s modulus E! = E,/2 was used to avoid local damage
resulting from a concentrated load. The application of the mechanical load in two loading steps and one
unloading step is controlled by the load parameter A. Chemical loading is applied by prescribing a time
variant calcium concentration ¢* at the bottom of the beam. The calcium concentration ¢* is decreased
from an initial equilibrium concentration of the sound material (c*/co = 1) to ¢*/cy = 0, representing
deionized water, and subsequently increased again to the initial equilibrium concentration ¢* /¢y = 1. For
the time integration the parameters o = 2 = y = 0.5 and the time step Az = 275 d are used.

3.2.1. Discussion of coupled chemo-mechanical damage

The right-hand side of Fig. 10 contains distributions of the mechanical damage parameter d,, at two
stages of loading. Since the ill-posed elasto-damage problem has not been regularized, damage is restricted
to one column of elements. As expected from the simple scalar damage model used in this analysis, which
gives the same response in tension and compression, damage propagates from the bottom and the top of the
beam towards the center. As a result of chemical attack along at the bottom of the beam, however, the
damage distribution is non-symmetric with respect to the line X, = 40 mm.

Fig. 11 illustrates, from the left to the right-hand side, the normalized calcium concentration of the pore
fluid ¢/cy, the concentration of the remaining calcium in the skeleton s/sy and the calcium dissolution rate
s' = $At for selected time steps. A logarithmic measure normalized with respect to the maximum dissolution
rate s, = —1327 mol/m® is used to visualize the portlandite, ettringite and CSH dissolution rates (values
—s' <1 mol/m® are set to —s' =1 mol/m?). From the top to the bottom, the first four graphs
(¢/At € [0,200]) correspond to chemical loading and the last two graphs (¢/A¢ € [250,300]) correspond to
unloading. During chemical loading the reduction of the prescribed concentration ¢* at I', and the re-
duction of ¢ within Q can be observed. As a consequence of the decreasing calcium concentration c,
chemical equilibrium between the skeleton and the pore water is violated and portlandite of the skeleton is
instantaneously dissociated. The portlandite dissolution front, characterized by a high gradient of the
concentration s and by a peak of the matrix dissolution rate s’ propagates through the beam. At 1/Ar = 100
a second front associated with the dissolution of CSH can be observed in the log —s'/logs/ , -plots. In the
s/so-plots, these two pronounced dissolution fronts are represented by two distinct steps. Between the
portlandite and CSH fronts ettringite is dissolved at a much lower rate. The distribution of the calcium
concentration ¢ of the pore fluid is approximately linear. The dissolution fronts propagate faster in the
damage zone close to the axis of symmetry (X; = 80 mm) compared to other regions of the beam, because
the apparent pore space and the macroscopic conductivity are increased by mechanically induced damage.
Consequently, the propagation of the dissolution front is accelerated due to mechanical damage.

In the phase of chemical unloading the concentration c is increased in the vicinity of the lower face of the
beam by the reflux of calcium ions. In the region of the portlandite dissolution front, however, the con-
centration ¢ further decreases and the dissolution front continues to destroy the cement paste. At the end of
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Fig. 11. Chemo-mechanical analysis of a cementitious beam: evolution of ¢/cy, s/sy and log —s'/logs/, . (X;,X> [mm]).

the analysis the initial concentration of calcium ions in the pore space is recovered and the chemical de-
gradation process is stopped (s’ = 0) but the increase of the porosity, represented by the state of s, is
permanent.

3.2.2. Interaction of chemically and mechanically induced material deterioration
To obtain a deeper insight into the interactions between mechanical and chemical material degradation,
results from the coupled chemo-mechanical analysis are compared to uncoupled purely mechanical and
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Fig. 12. Chemo-mechanical analysis of a cementitious beam: load—displacement diagrams (1) [N] and calcium concentration profiles
s/so at position X; = 160 mm for coupled and uncoupled analyses.

chemical analyses of the cementitious beam. The left-hand side of Fig. 12 shows the load-displace-
ment diagrams obtained from a coupled chemo-mechanical analysis and from a purely mechanical ana-
lysis.

As expected from the material point studies in the first part of the paper (Kuhl et al., in press), the
stiffness and strength of the beam are reduced by calcium leaching. This observation corresponds with the
three-point bending tests of cement beams subjected simultaneously to accelerated leaching by applying an
ammonium nitrate solution at the bottom of the beam by Le Bellégo et al. (2000, 2001a,b). Furthermore,
the degradation of structural stiffness and the decreasing limit load due to calcium leaching was observed by
Le Bellégo et al. (2000, 2001a,b). In their experiments the lateral faces of cement beams are exposed to an
ammonium nitrate solution. The duration of the exposure varies in the different tests. Subsequently dis-
placement controlled bending tests are performed. Compared with a pure mechanical experiment, these
tests show the reduction of structural stiffness and of the limit load due to chemical degradation. In Fig. 12
the un- and re-loading paths are different, because the porosity continues to decrease in the unloading/
loading cycles due to chemical dissolution. Due to chemical softening the damage threshold «,, is appar-
ently reduced during the reloading of the beam. In Fig. 13 the influence of chemical softening on the
structural level is investigated by comparing the distributions of the normal stress o;;(X;) for the uncoupled
(purely mechanical) and the coupled chemo-mechanical analyses at two selected positions X;. In the un-
coupled analysis, the stress distributions at ¢/A¢ = 50 and /At = 150 are identical and for ¢#/Ar > 200 the
stress state does not change. The largest stress is obtained at //A¢ = 150. In the coupled analysis the largest
stress is obtained at z/At = 50. The stress distribution across the height of the beam is only slightly changed
for ¢/At = 200. In contrast to the purely mechanical simulation the stress distributions at /At = 50 and
t/At = 150 are not identical. At #/Ar = 150 the peak stress is significantly reduced due to chemical soft-
ening. In addition to the stress level also the stress distribution is affected by chemical damage. The soft-
ening effect of propagating portlandite and CSH dissolution fronts is manifested in the graphs associated
with X; = 60 mm and, less pronounced, in the graphs for X; = 80 mm by more or less strong steps in the
stress profiles. These steps are associated with the loss of stiffness resulting from the dissolution of port-
landite (z/At = 50) and CSH for ¢/At > 150 (compare the s/so-distribution in Fig. 11). The marginal
variations of the stress distributions for ¢/A¢ = 200 are related to the movement of the portlandite disso-
lution front. Chemical softening propagating from the bottom face upwards results in a changing position
of the neutral axis of the beam towards positive X, coordinates. Consequently, the damage distribution is
non-symmetric with respect to the symmetry axis X, = 40 mm. Furthermore, chemical softening accelerates
the damage propagation of structures (compare Fig. 10). It is concluded that chemical damage may have a
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Fig. 13. Chemo-mechanical analysis of a cementitious beam: distribution of the normal stress component oy, /¢%{*™* (o] = 3.4214 N/
mm?) at positions X; = 160 mm and X; = 120 mm.

considerable influence on the structural behavior since not only the critical load is reduced by chemically
induced deterioration but also the stress distribution, and hence, the failure mode may be changed by
chemical dissolution processes.

On the right-hand side of Fig. 12 the profiles of the calcium content in the skeleton along the axis of
symmetry obtained for uncoupled (purely chemical) and coupled chemo-mechanical analyses are plotted at
different time steps. It is obvious that the portlandite dissolution front propagates faster if mechanical
damaged is considered in the analysis. As a consequence of the slower propagation of the portlandite
dissolution front in the purely mechanical analysis, a larger concentration gradient V¢ is computed which
results in a (marginally) faster propagation of the CSH dissolution front compared with the coupled chemo-
mechanical analysis. Since the total porosity ¢ = ¢, + ¢, + [1 — ¢y — ¢ ]d, is increased by mechanical
damage, the macroscopic diffusivity ¢D, is also increased. Consequently, the velocity of chemical degra-
dation is increased by mechanical damage (compare material point studies in the first part of the paper
Kuhl et al., in press). The acceleration of calcium leaching due to mechanical damage can also be observed
during the durability tests of beams subjected simultaneously to chemical and mechanical loads performed
by Le Bellégo et al. (2001a).

3.2.3. Ultimate load tests at different states of calcium leaching

In this section, the influence of calcium leaching to the residual ultimate load and stiffness of concrete
structures is demonstrated. For this purpose, the cementitious beam illustrated in Fig. 10 is analyzed
mechanically at different stages of chemical degradation. In the first part of the numerical experiment, a
prescribed calcium concentration ¢*/cy = (1 —¢/[100A¢]) is applied at the chemical Dirichlet boundary
X €. After six stages of chemical exposure, characterized by the exposure time 7. with
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Fig. 14. Load-displacement diagrams r(2) [N] for different states of chemical degradation characterized by the chemical exposure time
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from a purely mechanical analysis (7./A7 = 0).

T./At € [0, 50,100, 150,200, 250], the chemical dissolution state is frozen. In the second part of the nu-
merical experiment, purely mechanical, displacement controlled ultimate load tests using the leached ce-
mentitious beam samples are performed.

On the right-hand side of Fig. 12 the state of chemical degradation for 7, /Ar € [0, 50, 100, 150, 200] of the
uncoupled chemical analysis is illustrated by means of the calcium concentration of the skeleton s/s¢. Since,
in contrast to the present analysis, in Fig. 12 chemical unloading for 7,/A¢ > 200 is considered, only the
profiles for T, /At < 250 can be considered. On the left-hand side of Fig. 14 the resulting load—displacement
diagrams are shown. As expected, from the material studies in the first part of the paper (Kuhl et al., in
press) and from the structural analyses in the previous sections, the following observations are made: The
limit load 7. of the cementitious beam and the structural stiffness S = ryi/[Aeic0.1 mm] are significantly
reduced by calcium leaching. Furthermore, the slope of the load—displacement diagrams in the post-critical
regime indicate that the brittleness of the structure is slightly decreased. Analogous statements concerning
the structural effects of calcium leaching have been given by Le Bellégo et al. (2000, 2001a,b, 2003) based on
experimental investigations on concrete beams subjected to accelerated leaching. It is worth to mention that
the load—displacement diagrams »(1) for the leaching times 7,/Az = 150 and 7,./At = 200 show a different
post-critical structural behavior compared with the remaining curves. The kink in the softening branch of
the curves 7,/At = 150 and T,./At = 200 corresponds to a stage of chemical damage, in which the leaching
front has reached the loading zone (i.e. the hatched region in Fig. 10). Load re-distribution of stresses in
this area leads to a faster propagation of mechanically induced damage. On the right-hand side of Fig. 14
the limit load and the structural stiffness are plotted as function of the leaching time 7,. This diagram
shows the considerable reduction of the limit load and the structural stiffness with increasing chemical
degradation. At 7,/A¢ =250 the limit load and the structural stiffness are reduced by 40% and 30%,
respectively.

4. Conclusions

This paper describes the finite element strategy used for coupled numerical analysis of long-term
structural deterioration based upon the chemo-mechanical model for cementitious materials presented in
the companion paper (Kuhl et al., in press) together with representative results from finite element
durability analyses. The chemo-mechanical model accounts for the damage induced by external loading



62 D. Kuhl et al. | International Journal of Solids and Structures 41 (2004) 41-67

and chemical dissolution of calcium and the interactions of both mechanisms. It is based upon the
theory of mixtures. The associated coupled field problem is described by the mass balance of dissolved
calcium ions, the balance of linear momentum and related constitutive laws. Ingredients of the numerical
solution procedure are a second order accurate time marching scheme, the spatial discretization by
means of hierarchically generated higher order finite elements and the iterative Newton—Raphson so-
lution technique. Representative numerical experiments demonstrate the applicability of the chemo-
mechanical model and the numerical methods for the simulation of long-term degradation of structures
made of cementitious materials due to calcium leaching and mechanical induced damage. From a de-
tailed one-dimensional study of calcium leaching of a cementitious bar the following conclusions are
drawn:

(1) The propagation of pronounced dissolution fronts associated with the dissolution of portlandite and
CSH-phases is proportional to +/z. The dissolution of ettringite has a relatively minor influence.

(2) Calcium leaching is irreversible.

(3) Dissolution of the cementitious skeleton accelerates the calcium ion transport and, consequently, the
propagation of dissolution fronts and the chemical degradation of concrete structures.

(4) The time scale of dissociation—diffusion processes may significantly change during the numerical ana-
lysis.

(5) The source term [[¢p, + ¢,]c]’, which accounts for the change of the porosity and the calcium concen-
tration in the pore fluid, can be neglected compared to the matrix dissolution rate s. It may not be ne-
glected in the case of chemical unloading (s = 0).

An insight into interacting mechanisms between chemical dissolution processes and mechanically induced
damage on a structural level is provided by numerical analyses of a concrete beam subjected simultaneously
to chemical attack and mechanical loading. From the comparison of coupled and uncoupled analyses
as well as the sequentially performed chemical and mechanical analyses the following observations were
made:

(1) Calcium leaching reduces the stiffness and the limit load of structures.

(2) The brittleness of the structure is slightly decreased by calcium leaching.

(3) Calcium leaching changes the structural behavior.

(4) Mechanically induced damage not only results in the degradation of strength and stiffness of cementi-
tious materials but also amplifies the chemical degradation process.
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Appendix A. Finite element quantities

In this appendix the hierarchically generated shape functions, their derivatives with respect to the natural
coordinates, the Jacobi transformation, the generalized vector of residual forces and the generalized tangent
stiffness matrix are summarized for fully coupled chemo-mechanical two-dimensional elements are for-
mulated within the framework of the p-finite element method.
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For a systematic generation of higher order shape functions the hierarchical concept described by Szabé
and Babuska (1992) is used. The shape functions of the polynomial degree p are generated by four-nodal
shape functions related to the nodal coordinates £} and &,

by 4[p — 1] side modes
N¥3(&) =31 = &' (&)
N2 I +¢&)9
. l(é) f[ ) l_(fz) =2.3,4,....p (A.2)
N¥H(E) = 3[1 + &]P'(&))
N¥(&) =31 = &]9'(&)
and, finally for p > 3, by [p — 2][p — 3]/2 internal modes, compare Table 3.
NPH(E) = &(E)P (&) i,j=2,3,4,....p—2, i+j<p (A.3)
Table 3
Hierarchically generated shape functions based on Legendre polynomials
p nodal and side modes internal modes
1
2
3
4
5
6
7
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Internal modes are numbered consecutively by & € [1, [p — 2][p — 3]/2]. The functions &'(¢,), & = 1,2, are
defined in terms of Legendre polynomials P/(£,) with the polynomial degree i,
. 1 . .
P (&) = ———[P'(&,) — P72(¢, A4
(€)= P&) ~ PG (A4)
which can be generated by Bonnet’s recursion formula:
21 i—1

Pi(¢E,) = fP’ (&) — TPH(@) i=23,....p (A.5)
The roots of Eq. (A.S) are defined by constant and linear functions of the natural coordinate ¢&,:
PE)=1, P& =¢& (A.6)

The derivatives of the shape functions with respect to the natural coordinates & = [&, éz}T are also gen-
erated systematically. The derivatives ON'/3¢, = N’a of the nodal shape functions, the side—and the in-
ternal modes

Ni(§) = &1+ &&6]/4 Ny(&) = &1+ & &]/4
NiZ(@©) =[1 =& (&)/2  N7(§) =[-1]9'(¢)/2
Ni2(8) = 9'(&)/2 NY2(8) = [1 +&]9,(&)/2
. , (A7)
NG =1+ &)@ (&)/2 NYH(E) ='(&)/2
NY(©) = [-1]#'(&)/2 NY(&) = [1 = &9, (&)/2
NTH(E) = &, (&) (&) NTH(E) = #/(&) P, (&)

are calculated based on the derivatives @fi, o =1,2, given in terms of the derivatives of the Legendre
polynomials:

P (&) =[P(&) = P2(E))/V22i = 1], PYE)=0
P(&) = [2i = 1JP7 (&) + PLP(E,), P,L(fa) =1

As the shape functions are described in natural coordinates & = [&, fz]T the Jacobi transformations have to
be applied:

(A.8)

ON' o8
JE 0X

Here, d¢; = & is the element thickness of plane elements, J is the Jacobian and V:N' is the gradient of the
shape function N’ with respect to the natural coordinates &:
X Ko . . ON'
J= —NZX®V¢N véNzag

The integration of element vectors and matrices is performed over the two-dimensional domain by the
Gauss quadrature,

[1 [1<-><51,52>d51d&2 ZZ& e &) (A1)

=1 g=

VN' = =J . VN, dV = ddh = |J|d& d&h (A.9)

(A.10)
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where the number of Gauss points ‘gp’ is related to the highest polynomial degree, such that a full inte-
gration is guaranteed. For the natural coordinates of the Gauss points ¢ and ¢ and the weights o/ and «f
(see Szabd and Babuska, 1992).

A.2. Generalized vector of internal forces

Considering the hierarchical finite element approximation of the geometry (10), the Jacobian can be
calculated:

J~Y X' @ VN (A.12)
i=1

y, &y, Ay, Vu and ¢ are discretized by computing the gradient of the shape functions VN’ (A.9):
~—Y VN,  Vux> d@VN, &=V"u (A.13)
i=1 i=1

Using the symmetry of the stress tensor ¢ the approximation of the variation of the specific strain energy is
given in the following format:

Se:om Y ou-VN'-o (A.14)
i=1

With these approximations the tensor valued components of the generalized vector of residual forces r — r,,
given in terms of the generalized internal r and external forces r., are computed, compare Eq. (11):

rin+lf‘z = ,/Q VNl : qn+17:<dV + /QNIHQI)O + d)c]c + (i)cc + s’]nJrlfoch

rZErH-l—oc:/r Niq:-%—l—osz
q (A.15)
rjnnJrl—oc:‘/QVNi'dn+l—adV

= Nit*
I's

d4

me n+1—o n+l o

A.3. Generalized tangent stiffness matrix

Approximations (10) and the symmetry of the stress and constitutive tensors allow the discretization of
the individual terms included in the linearized internal virtual work (7):

88:2—::A£~226u VN'.—.VN'-Aw

(A.16)
68:—Ac~z Zéu VN'. N’Ac’

Finally, the tensor valued components of the generalized tangent stiffness matrix K’ (compare Eq. (11)) are
calculated as
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ij [ a a n o
ki.’m——/VN’-[—q] v Lt gy
Q n+l—o aun‘H

i oq1° an o
—/VN’-[—II] N Lol gy
Q

n+l—o ac”+1

ij
kC C

aCrH»l o

+ / VN'-[¢Dy),,,_, - VN ——=dV
Q Ocnt1

o d i1
+/N’ —S} 290, i gy
Q n+l—o

| Oc Os 0cy+1
[ 3% oK, OCpi1-
i ¢ y j " « A17
* /QN _6K5:|n+l xqsy a C’H‘l N aCn+1 dV ( )

Oc 6cn+1 acn+l

+/Ni-§} ¢¢Nf_aé{'+1—a aé‘de
n+l—o

, 6cn+1 o acrHrl
/N ¢O + ¢cn+1 1] TM acn+1 dV
Ko = /VN’ {a"} o Bt g
Q O¢ n+l—o au”hL]
Ky, = /VN’ {a“} i Ltz gy
0c n+l—o aanr]
where the abbreviation
oq1° 0¢, Os 6KC aDO
EA I LR = = et (19

is used. ¢, is defined by Eq. (8).
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